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SUMMARY

Linear theory is used to calculate the surface pressures, field
pressures, and wave drag of nonlifting bumped and indented bodies of
revolution in supersonic flow and the results are compared with the cor-
responding properties of a smooth basic body. The calculations show
that relatively small surface irregularities cause large pressure dis-
turbances both on the body and in the field. Application of & correction
for the curvature of the chardcteristics substantlally changes the nature
of the pressure distribution, particularly in the disturbance field gen-
erated by a surface irregularity. The drag results indicate that, in
general, the wave drag increases if volume is added to or subtracted from
a smooth basic body so as to produce a surface irregularity on the basic
body. The total wave drag of nonsmooth bodles consists of two relatively
simple terms - the drag of the basic body and the drag of the body deter-
mined from the area distribution of the bump or indentation alone - and
a complicated interference term. The interference parameters are pre-
sented for two body types and a range of values is suggested for use in
obtaining a reasonable estimate of the wave drag of nonsmooth bodies.

INTRODUCTION

The serodynamic characteristics of bodies of revolution at super-
sonic speeds have been considered in numerous investigations and several
methods have been developed to describe the flow past such shapes. The
metho@ of characteristics and the linear theory approximastions of
Von Kermén (ref. 1), Lighthill (ref. 2), and Ward (ref. 3) have proven
especially useful in this regard. Although many calculations have been
made by using these methods, most have been 1imited to smooth bodies.
With the advent of the area rule, however, there has been considerable
interest in nonsmooth shepes.

The purpose of the present paper is to consider the aerodynamic
properties of a simple class of nonsmooth bodies - namely, bodies of
revolution which have irregularities in area distribution. Linear theory
is used to calculate the surface pressures, field pressures, and wave




2 NACA TN 374k

drag for nonlifting bumped and indented parasbolic bodles of revolutlon
in supersonic flow and the results are compared with the corresponding
properties of & smooth basic body. The Whithem theory (ref. 4) is used
to correct the field pressures for the curvature of the characteristics.

SYMBOLS
A cross-gectional area
B interference-drag parameter appearing in equation (1k4)
D - D,
Cp pressure coefficient,
D wave drag
ry) - [ £
0 Vy - £
£ source-~distribution function
K=2%t 1 ML
2
V2o g3/
1 length of source distribution
M free-stream Mach number
N source-distribution constant
P local pressure
P, free-stream pressure
1l .2
o] dynamic pressure, E-pU
R body radius
U free-stream velocity

Vv volume
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X,r axial and radial distances, respectively, in cylindrical
coordinates

X,T coordinates defined by equations (12)

X0 origin of bump or indentation source distribution

y characteristic number, x - Br

B =M1

A incremental value

¥ ratio of specific heats

3 dummy variable of integration

o] free-stream density

@ disturbance velocity potential

Subscripts:

1 basic body

2 bump or indentation

SH Sears-~Haack body

X partial derivative with respect to x

r partial derivative with respect to

Primes denote derivatives with respect to the indicated argument
of the function.

METHOD OF CALCULATION

The linearized differential equation for exisymmetric supersonic
flow is

B2¢xx - Grp - % $r =0 (1)
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where B = YM2 - 1, M is the stream Mach mmber, and ¢ 1is the dis-
turbance velocity potential. (The coordinate system is defined in
fig. 1.) A solution of equation (1) for flow past a body of revolution
can be expressed as

_1 X £(e)ae
g 2“/; Vix - £)2 - p2? (2)

where f(t) represents a distribution of sources along the axis of the
body. The source distribution f£(¢) is related to the body configura-
tion by the boundary condition of zero normal velocity at the body sur-
face. With the aid of mass-flow considerations (see ref. 5), this
boundary condition can be written as .

x-BR(x)
2 (x) = f (x - £)f(g)at (3)
0 V(x - £)2 - p2%R2(x)

where R(x) is the body radius at any station x.

Inasmuch as the inverse of the integral equation (eq. 3) for the
source strength is not known, the method of analysis adopted was to
consider the source distribution as the primery veriable. With this
approech, nonsmooth bodies of revolution can be generated by the super-
position of two known source distributions. The source distribution
£1(x) gives rise to the basic body which lies between x = 0 and

X = 1. The bump or indentation is created by superposition of the
source distribution f£,(x) on F£(x) from x =x; to X = x5 + 1o,
Where Xg denotes the origin of f2 and 7,2 is the length of f2.
Thus,

£(x)

£, (x) (0sxsx)

v

£(x) = £9(x) T £5(x) (XO SxSxy+ 12> (%)

f£(x) = £1(x) (xo + 1 Sx < 7’1)

4

A plus sign before fa(x) corresponds to a bump and a minus sign, to
an indentation.
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The expressions for f1(x) and f£,(x) used in the analysis are

]
£1(x) = g“ 2<‘Ll%: - 3lyx + 2x3>
N
and e (5)
= 2 2 3
£o(x) = N22122 12 (x - xxb - 312(x - xo) + 2<x - xo)

The functions fl(x) and f,(x) each give rise to a parabolic body of
revolution in the slender-body epproximation

£(x) = A'(x) (6)

where A(x) is the cross-sectional area distribution and the prime
denotes the derivetive with respect to the argument of the function.
The parameter N; or N, which appears in equations (5) can be inter-

preted geometrically as the slender-body approximation (eq. 6) to the
fineness ratio of the body generated by £, or f, alone.

Calculetion of Body Shape

Equetion (3) may be written in terms of the source distributions £
and f, as

T(RQ(X) ) fx—BR(X) (x - E.)fl(é)dg N fx-ﬂR(x) (x - g)fe(g)dg
° (x - 6)% - B%%(x) Vo (x - £)2 - p%R2(x)

(1)

The calculation of body shape from this eguation is tedious inasmuch as
R(x) occurs in each term. Consequently, in the following paragraphs
the equation is simplified and expressed in a form which partially sepa-
rates the calculation of bump shape from the calculation of basic body
shape.
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For certain types of problems, it is well known that body shepes
calculated by equation (3) can be closely approximated by preassigning
a value to R(x) on the right-hand side of the equation. If R(x)/1
is small compared with unity, R(x) may be set equel to zero and the
equation reduces to the simple slender-body relation (eq. 6). For
quasi-cylindrical configurations (ref. 2), R(x) may be assigned a
constant value on the right-hand side of equation (3). In reference 6,
which considers the problem of boattell bodies of revolution having
minimm drag, R(x) is assigned the values corresponding to the cone
that passes through the nose and base of the body.

—The approximate methods outlined suggest that same reasonable sim-
plifications can be made in equation (7). For the body shapes considered
herein, R(x) is very small campared with the length of i and, con~
sequently, the slender-body approximation can be made in the first inte-

gral of equation (7). However, inasmuch as R(x) is not necessarily
small compdred with the length of f,, some other approximstion is

required in the second integral. An approximation that has the merit
of simplicity and accuracy is to replace R(x) in the second integral
of equation (7) with the radius of the basic body as determined from
the slender-body relation 2mRy(x)R;'(x) = £1(x). Then

(8)

fx-ﬁRl(x) (x - g)£,(8)at

X
RE(x) = £q(8)ae &
fo X0 Y(x - £)2 - %R, %(x)

where the first integral represents the area distribution of the slender
basic body and the second integral, which for a given Mach number depends
only on Rl(x) and f,, represents the area distribution of the surface

irregularity.

' A comparison of the bump area distributions AA as obtained from
equations (6), (7), and (8) for N; =12, N, =8, xo/ll = 0.50,

12/11 = 0.25, and M = |2 1is presented in figure 2 and a comparison

of the total area distribution is shown in figure 3. The approximation
afforded by equation (8) for both the bump area and the total area is
considered satisfactory, whereas the slender-body approximation (eq. 6)
is considered inadequate for the calculation of nonsmooth shapes.

Calculation of Pressure Field

Linear theory.- The linearized pressure coefficient at any point
in the field is given by

Cp = -2fx - ¢r2 (9)
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where

1 P £'(g)ag
= - = 10
¢x 2t Jo VGx - £)2 - p2r2 (10)

(11)

1 PEPT (x - op)er(e)ae
e VA S

Whitham's correction.- It is well known that linear theory does
not provide a first-order espproximation to the flow field at supersonic
speeds and that the approximation becomes worse as the distance from
the body is increased. This fact led Whithem (ref. 4) to develop a
method for correcting the linear flow fields so that a first approxima-
tion 1s obtained everywhere. Whitham's basic hypothesls is that linear
theory gives the correct values for the velocity components but locates
them incorrectly. By teking the curvature of the characteristics into
account, Whithem deduces that the velues of @ (x,r) and @.(x,r)

should be located at the coordinates (X,T) where

1—'=r

(12)
X=pr - KF(y)VT + ¥ ]
Tn equation (12)
y=x-pr
Y er(e)ae
F(y) = fo Ty —
and
o2 *1 Mt
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When the flow-field data are relocated by means of equation (12),
it is found that, in some cases, the characteristic lines cross. Whitham
interprets such intersections as Indicetions of the presence of shock
waves. Reference L4 presents further details and an interesting graphical
method of locating the shock waves from the F(y) curve.

Calculation of Wave Drag

The wave drag of a distribution of sources along an axis can be
related to the momentum transfer through a cylindrical surface enclosing
the axis. The expression for the wave drag is then obtained (see ref. 1,
for example) as

1 pl
21D L, '
= - _L j; £1(x)21(8)1oge |x - &]ax at (13)

where D 1is the wave drag and q 1is the dynasmic pressure. When the
source distributions given by equation (4) are substituted into equa-
tion (13) and the indicated integrations performed, the wave drag can

be written as
2
D MYt Do
= =1+8—](=L)+-=
Dy, No/ \l1/ Dy

or

D

4 2
N \2(1) [\ 2o
2 -2 ofgt) (12) () (9 4

+

=1

where Dy 1s the wave drag of the basic source distribution £y alone,
Do 1is the wave drag of f, alone, and D is the total wave drag which
results from the combination of f; and f£f,. A plus sign preceding the

second term on tne right-hend side of equation (14) corresponds to a
bump on the basic body and a minus sign corresponds to an indentation.
The factor B appearing In the equation is a complicated function

of xO/Zl and 12/11.
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RESULTS AND DISCUSSION

Body Shape

Scale drawings of the basic, bumped, and indented bodies considered
herein are presented in figure 4. These shapes were calculated from the
basic mass-flow boundary condition (eq. (7)) for Ny =12, N, = 8,

o[y = 0.50, 15f1; =0.25, end M =V2. The differences between the

basic body shape and the shapes of the bumped and indented bodies appear
small for the case selected. In order to illustrate more clearly the
megnitude of the area change introduced by the surface irregularities,
the cross-sectional area distributions of these bodies are presented in
figure 5.

The veriation of bump area distribution with the strength of the
bump source distribution is shown in figure 6, where bump ares distri-
butions are presented for values of N, = 6, 8, and 10. The indentations

for corresponding values of No are slightly different from the bump

area distributions shown inasmuch as body shapes calculated from equa-
tion (7) are influenced by the differences between the radii of the
bumped and Iindented bodies. If equation (8) is used to calculate body
shape, however, the area distributions of corresponding bumps and inden-
tations are the same.

Pressure Field

The surface pressure distributions for the basic, bumped, and
indented bodies corresponding to values of N; = 12, xo/Zl = 0.50,

12/11 =0.25, M =1V2, and N, = 6, 8, and 10 are presented in fig-

ure 7. Although the surface irregularities considered make only smsall
visual changes in body shape (for example, see fig. }), the surface
pressure disturbances caused by the irregularities are seen to be rela-
tively large. It should be pointed out, however, that viscous effects
would probably reduce the magnitudes of the pressure disturbances arising
from such small surface lrregularities.

In the 1limit as the bump length goes to zero, the change in surface
pressure coefficient due to the bump can be obtained exactly from the

two-dimensional pressure relation ACp = %-AR', where AR' 1s the change
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in body slope due to f2. A ccmparisoﬁ of the values of ACP at the o

surface as obtained from equation (9) and the two-dimensional relation
is presented in figure 8 for the bump considered in the present paper.

Field-pressure coefficients, with and without the Whitham correc-
tion, for the basic, bumped, and indented bodies (fig. 4), are presented
in figures 9, 10, and 11, respectively. Pressure distributions for each
body shape are given at the four field locations ;/ll = 0.125, 0.250,

0.500, and 1.0.

The shift of the field pressures predicted by the Whitham theory
for the basic body (fig. 9), although significant, is not large at the
field locations shown, and the predicted shock at the nose of the body
effects only a small portion of the field. However, the Whitham cor-
rection in the region of the bump or indentation (figs. 10 and 11) is
relatively large at all field stabtions represented, and the predicted
shocks have a marked effect on the pressure distributlion.

In order to illustrate the nature of the calculated flow field about
the basic, bumped, and indented bodies, sketches of the Whitham corrected
characteristics and shock locations are presented in figure 12. In the
region of the surface irregularity the corrected characteristics exhibit
considerable curvature, whereas the linear characteristics would have no
curvature and would point downstresm at an angle of 45° from the body
center line.

Wave Drag

The variation of DfD; with N[N, as calculated fram equation (1)
for both bumped and indented bodies is presented in figure 13 for
1o/l = 0.25 with x5/1; =0 and 0.375, and for 1p/1; = 0.50 with
Xp[l1 = O end 0.25. The values of xpfl1 chosen bracket the range
of DfDl for the given 12/113 that is, the value of D/Dl for other
values of xo/ll and the given 12/11 lie between the curves shown.

Some of the curves correspond to two locations of the source distri-
bution f,: For. example, the bumped-body curve for 1,/l7 = 0.25 and
X0 /11 = 0.75 is identical to that for xufl; = 0. It should be noted,
however, that the drag of a given nonsmooth body is not exactly the
same in a forward and reverse flow because the bump area depends upon

both the bump source strength and the configuration of the basic body.
(See eq. (8).)

Examingtion of figure 13 shows that in most cases the wave drag
increases if volume is either added to or subtracted from a smooth basic "




NACA TN 37hk4 11

body so as to produce a surface irregularity on the basic body. For
exemple, the bumped and indented bodies (fig. 4) have 41 percent and
22 percent more drag, respectively, than the smooth basic body.

According to figure 13, the ratios 12/11 and Nl/N2 are of pri-

mery importance in the determination of the drag, whereas the location
of the surface irregularity is of secondary importance. The latter
conclusion might have heen anticipated from a result of Robert T. Jones
presented in reference T that, for a Sears-Haack basic body, the drag
Increment dvué to adding or subtracting a bump is independent of the
location of the bump. IFf fgg denotes the source distribution which

would give rise to a Sears-Haack body in the slender-body approximation
and f, denotes any other source distribution shorter than fgg, Jones

found that the drag of the shape gilven by superposition of fo on fgp
can be expressed as

Vv
—_—= 1 2 = 3 = (15)

In equation (15), D, denotes the drag of fy ealone and Dgy denotes
the drag of fgg alone. The symbols Vo, and Vgg are to be inter-

preted in a manner similar to that for N for the'parabolic shapes;
that is, Vo (or VSH) is the volume of the body defined by equation (&)

for £, (or fSH) alone.

The expressions for the drag given.by equations (lh) and (15) nat-
urally separste into three parts - the drag of the basic body alone,
the dreg of a body determined by the volume of the bump or indentation
- alone, and an interference drag. In general, the drag of the separate
camponents can be calculated quite easily, whereas the computation of
the interference drag is rather involved. It is noteworthy thet Jones
discovered a case for which the interference drag is given by such a
simple expression

When equation (15) is written in the form of equation (14) for two
Sears-Haack source distributions, the interference-drag persmeter B
is given by
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These values of B are shown in figure.ll} for comparison with
those appearing in equation (14) for the parabolic shapes considered in
this paper. There 1s general agreement between the magnitudes of B
for the various length ratios. This agreement suggests the possibility
of obtaining a rapid estimate of the drag of nonsmooth shapes by selec-
tion of a value of B from figure 14 on the basis of length ratio alone.

CONCLUDING REMARKS

The supersonic pressure field and wave drag of nonlifting bumped
and indented bodies of revolution are calculated by linear theory and
the results are compared with the corresponding properties of ‘a smooth
body. A comparison of the calculated pressure distributions indicates
that relatively smell surface lrregularities cause large pressure dis-
turbances both on the body and in the field. Application of a correc-
tion for the curvature of the characteristics substantially changes the
nature of the pressure distribution, particularly in the disturbance
field generated by a surface irregularity. The drag results indicate
that, in general, the wave drag increases if volume is added to or sub-
tracted from a smooth basic body so as to produce a surface irregularity
on the baslc body. The total wave drag of nonsmooth bodies consists of
two relatively simple terms - the drag of the basic body and the drag
of the body determined from the cross-sectional area distribution of
the bump or indentation alone -~ and a complicated interference term.

The interference parameters are presented for two body types and a range
of values is suggested for use in obtaining a reasonaeble estimate of the
drag of nonsmooth bodies.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 1L, 1956.
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Figure 9.- Concluded..
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Figure 10.~ Linear fleld pressure distributians, with and without Whitham

correction, for bumped body of figure L,

M=\2.
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Figure 10.- Continmued.
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Figure 10.- Continued.
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Figure 10.~ Concluded.

f\

LS ML VOVN



.06 §
: =
———— Hithout Whitham carrection /’ / =
ol LA e R — — ———¥ith Vhitham occrrection ;
. ,,/ \\:\ — —— — Predicted shock locatien ,7 }QN
i’/ . NN ) 17 E
/ T\ 13
02 \;\ y
/ N ;
: T
| ™, N )4
0 \ i’ i
\ /l ‘; I3
AN ] \ /
N ! \ il
-.02 T L ) v
N N 4! \\\ //
~ JJ ! 1y A7
L W/l
"'-oh 1) K
L/ LY
| L -
| I
" |/ | |
! (R
1] l Il
‘u‘ ; \
=0 A
-'1(')-:1 0 ol .2 3 o -5 .6 o7 .8 2 1.0
X - Br .
I
(a) X = 0.125.
iy,
Figure li.- Linear field pressure distributions, with and without Whitham A
corraction, for indented body of figure 4. M = V2.
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(a) Basic body. ,

Figure 12.- Characteristic field and shock locatlons predicted by Whitham
theory for basic, bumped, and indented bodies of figure k. M = /2.
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Tlgure 12.- Continued,
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(e) Indented bedy .
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Figure 13.- Verlation of D/D; with N1/N2 for several values of length
ratio 12/11 and location xo/ll.
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Figure 14.- Veriation of the drag interference factor B with

location xo/zl and length retio 12/11.

il KL VOWN

6¢



